Université Lyon 1
Université de Lyon
Arqus
Accueil  >>  Master  >>  Informatique  >>  M2 Intelligence artificielle  >>  Techniques d'apprentissage automatique
  • Domaine : Masters du domaine SCIENCES, TECHNOLOGIES, SANTE
  • Diplôme : Master
  • Mention : Informatique
  • Parcours : M2 Intelligence artificielle
  • Unité d'enseignement : Techniques d'apprentissage automatique
Nombre de crédits de l'UE : 3
Code APOGEE : INF2417M
UE Libre pour ce parcours
UE valable pour le semestre 1 de ce parcours
    Responsabilité de l'UE :
ELGHAZEL HAYTHAM
 haytham.elghazeluniv-lyon1.fr
04.26.23.44.65
BENABDESLEM KHALID
 khalid.benabdeslemuniv-lyon1.fr
04.72.43.19.97
    Contact scolarité :
HANACHI SARRA
 sarra.hanachiuniv-lyon1.fr
04.72.43.27.30
    Type d'enseignement
Nb heures *
Cours Magistraux (CM)
10.5 h
Travaux Dirigés (TD)
9 h
Travaux Pratiques (TP)
10.5 h
Durée de projet en autonomie de l'étudiant (PRJ)
0 h
Durée du stage
0 h
Effectifs Cours magistraux (CM)
210 étudiants
Travaux dirigés (TD)
35 étudiants
Travaux pratiques (TP)
18 étudiants

* Ces horaires sont donnés à titre indicatif.

    Pré-requis :
Des connaissances de base en programmation Python et en mathématiques/statistiques sontrequises
    Compétences attestées (transversales, spécifiques) :
Ce module est composé de parties au sommet de la chaîne de traitement des données qui visent le  même objectif de production de connaissances, typiquement pour les décideurs, à partir des données.
Il vise à :
•Permettre aux étudiants d’appréhender les enjeux méthodologiques, technologiques etéconomiques d’un projet de traitement de données
•Expérimenter ces enjeux à travers des exemples concrets et pratiques.
•Assimiler les objectifs du Machine Learning et connaître ses techniques et outils declassification, derégression, de clustering et de sélection de variables.
•Sensibiliser les étudiants aux problèmes variés que pose l’extraction de connaissances(descriptivesou prédictives) dans les gros volumes de données.
    Programme de l'UE / Thématiques abordées :
•Tour d’horizon des problèmes & types d’apprentissage (supervisé/non supervisé, classification/régression, single/multi-output, structuré/non structuré, statistiques ou non, etc.).
•Principaux modèles et algorithmes d’apprentissage supervisé (modèles linéaires, réseaux de neuronnes, arbres de décision, Bagging, Random Forest, Boosting) et d’apprentissage nonsupervisé (K-means, clustering hiérarchiques, etc.)
•Les concepts importants : critères de performance, validation croisée, overfitting.
•Sélection de variables.
•Applications : biologie, santé, marketing, maintenance prédictive, etc
•Mise en pratiquesur des jeux de données avec scikit-learn sous Python sur des cas d'étudesréels
    Liste des autres Parcours / Spécialité / Filière / Option utilisant cette UE :
Date de la dernière mise-à-jour : 07/09/2022
SELECT * FROM parcours INNER JOIN ue_parcours ON PAR_ID_FK=PAR_ID INNER JOIN mention ON MEN_ID = PAR_MENTION_FK WHERE PAR_ACTIVATE = 0 AND UE_ID_FK='20493' ORDER BY UE_ID_FK ASC, PAR_ID_FK ASC