Le parcours M2 Data Science (mention Informatique) permet d’acquérir un socle de connaissances techniques conduisant à l’exercice opérationnel du métier de « data scientist ». Il a pour finalité de préparer les étudiants à l'exploitation et au traitement de données complexes, bruitées et hétérogènes, à l'aide de modèles d’apprentissage automatique généraux ou spécifiques aux domaines d’application visés (vision, texte, langage). Plusieurs cours Machine Learning sont proposés (ML 1 & 2, Deep Learning, Modèles Graphiques Probabilistes). En Deep Learning, l’accent est mis sur le Natural Langage Processing (NLP). Une description du parcours M2 Data Science est fournie sur le site: http://master-info.univ-lyon1.fr/ds
The M2 Data Science course (Computer science option) provides a foundation
of technical knowledge (computer science and statistics) leading to the operational
exercise of the profession of "data scientist". Its purpose is to prepare students for
the exploitation and processing of complex, noisy and heterogeneous data, using
general machine learning models or specific to the targeted application domains
(vision, text, language).The focus is on large masses of data (Big data With these
new orders of magnitude, the capture, storage, processing and visualization of data
must be rethought and apprehended in a new way. A description of the M2 Data
Science course is provided on the site: http://master- info.univ-lyon1.fr/ds
The prerequisites of a first year of a master's degree in computer science, or equivalent, are necessary. Knowledge in the following areas is preferred:
- Probabilities and statistics
- Continuous and discrete optimization
- Python development
- Numerical analysis
- Management of large databases
Students from the M2 Data Science acquire solid skills in Machine Learning, Deep Learning and Big Data thanks to an effective pedagogy based on numerous case studies and feedback.
- Opportunities in all sectors of activity interested in very recent tools (data mining, big data, machine learning, very large mathematical methods) for the processing of massive data:
marketing;
information technology
social networks;
industrial sector;
biological and medical sector.
- Possibility of continuing with a thesis in applied mathematics.
Students are assessed according to several methods:
- Written checks
- Projects to be carried out individually or in pairs.
- Graded practical work
The prerequisites of a first year of a master's degree in computer science, or equivalent, are necessary. Knowledge in the following areas is preferred:
- Probabilities and statistics
- Continuous and discrete optimization
- Python development
- Numerical analysis
- Management of large databases