Université Lyon 1
Université de Lyon
Arqus
  • Domaine : Licences du domaine SCIENCES, TECHNOLOGIES, SANTE
  • Diplôme : Licence
  • Mention : Mathématiques
  • Parcours : Cursus universitaire préparatoire aux grandes écoles d'ingénieurs
  • Unité d'enseignement : Analyse 4 cursus prépa
Nombre de crédits de l'UE : 6
Code APOGEE : MAT2087L
UE Libre pour ce parcours
UE valable pour le semestre 1 de ce parcours
    Responsabilité de l'UE :
BADR NADINE
 nadine.badruniv-lyon1.fr
DEJOU GAELLE
 dejoumath.univ-lyon1.fr
04.26.23.45.13
    Type d'enseignement
Nb heures *
Cours Magistraux (CM)
24 h
Travaux Dirigés (TD)
36 h
Travaux Pratiques (TP)
0 h
Durée de projet en autonomie de l'étudiant (PRJ)
0 h
Durée du stage
0 h
Effectifs Cours magistraux (CM)
210 étudiants
Travaux dirigés (TD)
35 étudiants
Travaux pratiques (TP)
18 étudiants

* Ces horaires sont donnés à titre indicatif.

    Compétences attestées (transversales, spécifiques) :
Non rédigé
    Programme de l'UE / Thématiques abordées :
  • Normes sur R^n, normes usuelles, boules. 

  • Éléments de topologie de R^n muni de sa norme euclidienne. Distance euclidienne, boules, ouverts, fermés, voisinages, point intérieur, point adhérent. Compacts. Critères séquentiels. Il ne s'agit pas de faire un cours de topologie des espaces vectoriels normés. 

  • Continuité des fonctions de R^n dans R^p.  Théorème des bornes atteintes. 

  • Calcul différentiel pour les fonctions de R^n dans R^p. Application différentiable, différentielle, dérivées partielles, matrice jacobienne, différentielle d’une combinaison linéaire, d’une composée et de B(f,g) où B est une application bilinéaire, dérivées partielles d’une composée (règle de la chaîne). Cas des applications numériques : gradient.  Applications de classe C^1, L’application f est de classe C^1 sur un ouvert Ω si et seulement si les dérivées partielles existent en tout point de Ω et sont continues sur Ω. 

  • Fonctions de classe C^k. Une application est dite de classe C^k  sur un ouvert Ω si ses dérivées partielles d’ordre k existent et sont continues sur Ω. Opérations algébriques sur les applications de classe C^k . Composition d’applications de classe C^k .

  • Fonctions de classe C^2 de R^n dans R. Théorème de Schwarz. Matrice Hessienne. Formule de Taylor-Young à l’ordre 2. 

  • Extrema. Points critiques. Conditions nécessaires et suffisantes d’ordre 1 et 2. 

  • Arcs paramétrés C1. Vecteurs tangents et normaux. Exemples simples dans le plan.

    Liste des autres Parcours / Spécialité / Filière / Option utilisant cette UE :
SELECT * FROM parcours INNER JOIN ue_parcours ON PAR_ID_FK=PAR_ID INNER JOIN mention ON MEN_ID = PAR_MENTION_FK WHERE PAR_ACTIVATE = 0 AND UE_ID_FK='25569' ORDER BY UE_ID_FK ASC, PAR_ID_FK ASC