Université Lyon 1
Arqus
Accueil  >>  Séries temporelles
  • Unité d'enseignement : Séries temporelles
Nombre de crédits de l'UE : 3
Code APOGEE : PL8015MM
    Responsabilité de l'UE :
DEBIT NAIMA
 naima.debituniv-lyon1.fr
04.72.43.10.89
    Type d'enseignement
Nb heures *
Cours Magistraux (CM)
24 h
Travaux Dirigés (TD)
9 h
Travaux Pratiques (TP)
12 h
Durée de projet en autonomie (PRJ)
3 h
Activité tuteurée personnelle (étudiant)
6 h
Activité tuteurée encadrée (enseignant)
3 h
Heures de Tutorat étudiant
6 h

* Ces horaires sont donnés à titre indicatif.

    Pré-requis :
Cursus Mathématiques appliquées, niveau L3 validé.
    Compétences attestées (transversales, spécifiques) :

Comprendre et mobiliser un large champ de  sciences et techniques

  • Mobiliser et combiner un socle de connaissances scientifiques et techniques
  • S'approprier et mobiliser de nouveaux savoirs et savoir-faire
  • Mener une veille scientifique et technologique

Identifier et analyser un besoin client

  • Appréhender l'environnement informatique (matériel, logiciel et système d'information) ainsi que les besoins métiers du client

Proposer une solution adaptée, dans le domaine des Mathématiques Appliquées, en prenant en compte les contraintes environnementales

  • Définir  un à plusieurs types de modélisation / discrétisation / implémentation  à différents niveaux de finesse en réponse au cahier des charges
  • Modéliser mathématiquement un problème  en s'appuyant sur une démarche scientifique dans le domaine d'application du client
  • Concevoir une méthode de résolution et un algorithme associé en réponse à un problème en prenant en compte les contraintes opérationnelles
  • Modéliser la structuration des données caractérisant  un problème complexe
  • Proposer un protocole de simulation / plan d'expérience
  • Définir et interpréter des éléments de performance pour proposer une solution optimale
  • Développer la solution choisie dans l'environnement client

Interagir avec son environnement de façon professionnelle et citoyenne

  • Rendre compte de son travail
  • Rechercher et exploiter des ressources disponibles dans son environnement
    Programme de l'UE / Thématiques abordées :

Ce cours a pour but de présenter les méthodes de traitement statistique liées aux séries

temporelles : lissage, désaisonnalisation et prévision

Analyse descriptive de séries temporelles (décomposition saisonnière, lissage exponentiel) ;

Modélisation aléatoire d’une série temporelle : processus de second ordre, stationnarité, fonction d’autocovariance, fonction d’autocorrélation, fonction d’autocorrélation partielle, densité spectrale ;

Les processus univariés :MA, AR, ARMA, ARIMA, SARIMA , ARCH, GARCH;

Pratique des modèles SARIMA(Méthodologie de Box-Jenkins) : identification, estimation, vérification, validation, comparaison.

 

Supports pédagogiques :

¦ Brockwell, P. & Davis R., Introduction to Time Series and Forecasting, Springer, 1996.

¦ Bosq D., Lecoutre J-P., Analyse et prévision des séries chronologiques. Méthodes paramétriques et non paramétriques,Masson, 1992.

¦ Aragon, Y., Séries temporelles avec R : Méthodes et cas, Springer, 2011.

Logiciels d’appuis : R et Sci-kit learn


    Parcours / Spécialité / Filière / Option utilisant cette UE :
Date de la dernière mise-à-jour : 19/02/2024
SELECT MEN_ID, `MEN_DIP_ABREVIATION`, `MEN_TITLE`, `PAR_TITLE`, `PAR_ID` FROM parcours INNER JOIN ue_parcours ON PAR_ID_FK=PAR_ID INNER JOIN mention ON MEN_ID = PAR_MENTION_FK WHERE PAR_ACTIVATE = 0 AND UE_ID_FK='18828' ORDER BY `MEN_DIP_ABREVIATION`, `MEN_TITLE`, `PAR_TITLE`