- Unité d'enseignement : Data processing and analystics
Nombre de crédits de l'UE : 6
Code APOGEE : INF2492M
Type d'enseignement
Nb heures *
Cours Magistraux (CM)
36 h
Travaux Pratiques (TP)
24 h
* Ces horaires sont donnés à titre indicatif.
Compétences attestées (transversales, spécifiques) :
Knowledge: Detailed knowledge of the components of Big Data processing systems spanning heterogeneous data. |
Skills: Design, deploy and use data processing and analytical systems. |
Competences: Independently deploy data processing systems and enabling them to execute anaytical tasks on real-life data. Be critical with the literature on data management and data science systems. |
Programme de l'UE / Thématiques abordées :
In many sectors of the society, spanning from business to finance, from e-commerce to telecommunication, from scientific research to advanced engineering, successful systems must leverage the availability of large volumes of data through the ability to efficiently perform complex analytics in order to extract significant information.
In this course, the students will learn the data processing techniques including analytical and transactional processing for both structured and unstructured data.
Data processing and analytics techniques apply to a wide range of data-oriented paradigms in the Big Data landscape.
Techniques include query processing and data preparation techniques and algorithms allowing to handle complex massive datasets as input to subsequent data intelligence tasks.
During the course, the students will be the opportunity to use and experiment with existing data processing systems and to get familiar with the latest research advances on this topic.
Parcours / Spécialité / Filière / Option utilisant cette UE :
Date de la dernière mise-à-jour : 22/08/2022
SELECT MEN_ID, `MEN_DIP_ABREVIATION`, `MEN_TITLE`, `PAR_TITLE`, `PAR_ID` FROM parcours INNER JOIN ue_parcours ON PAR_ID_FK=PAR_ID INNER JOIN mention ON MEN_ID = PAR_MENTION_FK WHERE PAR_ACTIVATE = 0 AND UE_ID_FK='26079' ORDER BY `MEN_DIP_ABREVIATION`, `MEN_TITLE`, `PAR_TITLE`