Université Lyon 1
Arqus
Accueil  >>  Méthode numérique pour le génie des procédés
  • Unité d'enseignement : Méthode numérique pour le génie des procédés
Nombre de crédits de l'UE : 3
Code APOGEE : MGC1116M
    Responsabilité de l'UE :
FIATY KOFFI
 koffi.fiatyuniv-lyon1.fr
    Type d'enseignement
Nb heures *
Cours Magistraux (CM)
15 h
Travaux Pratiques (TP)
15 h

* Ces horaires sont donnés à titre indicatif.

    Pré-requis :
Notion de développement limité de Taylor, application des différentielles, fonctions à plusieurs variables, dérivation
    Compétences attestées (transversales, spécifiques) :
Acquérir des connaissances de bases nécessaires à la compréhension de l'importance des algorithmes de calculs numériques en simulation numérique, ainsi que les difficultés rencontrées dans la mise en œuvre pratique et l'utilisation de ces algorithmes. Développer des méthodes de résolution numérique basées sur la résolution des équations différentielles et des équations aux dérivées partielles
    Programme de l'UE / Thématiques abordées :

-Méthodes d'intégration numériques (Euler, Runge-Kutta d'ordre 2 et d'ordre 4, Euler-Cauchy,…)

-Résolution numériques des équations différentielles et des équations aux dérivées partielles par utilisation des différences finies et la méthode des collocations orthogonales et ou les volumes finis

-Identification paramétrique. On se limitera au cas des moindres carrés linéaires et non linéaires faisant appel à la méthode du gradient, de Newton et de Levendberg-Marquardt. Intervalles de confiance, analyse des fonctions de sensibilité.

SELECT MEN_ID, `MEN_DIP_ABREVIATION`, `MEN_TITLE`, `PAR_TITLE`, `PAR_ID` FROM parcours INNER JOIN ue_parcours ON PAR_ID_FK=PAR_ID INNER JOIN mention ON MEN_ID = PAR_MENTION_FK WHERE PAR_ACTIVATE = 0 AND UE_ID_FK='26284' ORDER BY `MEN_DIP_ABREVIATION`, `MEN_TITLE`, `PAR_TITLE`