Université Lyon 1
Arqus
Accueil  >>  Machine Learning for medical image analysis
  • Unité d'enseignement : Machine Learning for medical image analysis
Nombre de crédits de l'UE : 3
Code APOGEE : POL2064M
    Responsabilité de l'UE :
DUCHATEAU NICOLAS
 nicolas.duchateauuniv-lyon1.fr
04.72.43.71.47
TSE VE KOON KEVIN
 kevin.tse-ve-koonuniv-lyon1.fr
04.72.43.89.51
    Contact scolarité :
TOURVIEILLE CORINNE
 corinne.tourvieilleuniv-lyon1.fr
04.26.23.71.39
    Type d'enseignement
Nb heures *
Cours Magistraux (CM)
21 h
Travaux Pratiques (TP)
9 h
Activité tuteurée personnelle (étudiant)
0 h
Activité tuteurée encadrée (enseignant)
0 h
Heures de Tutorat étudiant
0 h

* Ces horaires sont donnés à titre indicatif.

    Compétences attestées (transversales, spécifiques) :
Non rédigé
    Programme de l'UE / Thématiques abordées :
This teaching unit aims at presenting the fundamentals of machine learning and deep learning applied to the analysis of medical images, through courses and practical work.
For more than a decade, these methods have changed the way we approach image processing problems and have achieved unprecedented performances. This introduction focuses on the basic principles of these methods and their applications, and provides the knowledge basics to understand and implement more advanced state-of-the-art methods.

The lectures are organized as follows :
1- Introduction to Machine Learning for Medical Image Analysis. A Case study. (1h)
2- Feature extraction (2h)
From Image-based (gradient, texture) and bio-inspired (i.e kinetic modeling) to radiomics features
3- Supervised Learning (4h)
Principles and fundamentals, Kernel machines, Decision trees, Neural Networks
4 - Unsupervised Learning (4h)
Principles and fundamentals, clustering, dimensionality reduction, and applications
5 - Deep Learning (4h)
Why CNN and deep? Basic elements of convolutional neural network, Training optimization and
regularization
Common deep architectures for classification, segmentation and localisation,
6 – Performance and comparison assessments (1h during lab)
Cross-validation and (paired) t-test

Labs :
Machine Learning 4h
Deep learning : 4h

Thomas GRENIER: PhD - Associate Prof. INSA - CREATIS
Nicolas DUCHATEAU: PhD - Associate Prof. UCBL - CREATIS
Carole LARTIZIEN: PhD - DR CNRS - CREATIS
 
Date de la dernière mise-à-jour : 05/09/2024
SELECT MEN_ID, `MEN_DIP_ABREVIATION`, `MEN_TITLE`, `PAR_TITLE`, `PAR_ID` FROM parcours INNER JOIN ue_parcours ON PAR_ID_FK=PAR_ID INNER JOIN mention ON MEN_ID = PAR_MENTION_FK WHERE PAR_ACTIVATE = 0 AND UE_ID_FK='24707' ORDER BY `MEN_DIP_ABREVIATION`, `MEN_TITLE`, `PAR_TITLE`