Université Lyon 1
Arqus
  • Domaine : Masters du domaine SCIENCES ET TECHNOLOGIES
  • Diplôme : Master
  • Mention : Mathématiques appliquées, statistique
  • Parcours : M1 Mathématiques appliquées, statistique
  • Unité d'enseignement : Systèmes dynamiques
Nombre de crédits de l'UE : 3
Code APOGEE : MAT1354M
UE Libre pour ce parcours
UE valable pour le semestre 1 de ce parcours
    Responsabilité de l'UE :
PUJO-MENJOUET LAURENT
 laurent.pujo-menjouetuniv-lyon1.fr
04.72.43.10.08
    Type d'enseignement
Nb heures *
Cours Magistraux (CM)
12 h
Travaux Dirigés (TD)
12 h
Travaux Pratiques (TP)
6 h

* Ces horaires sont donnés à titre indicatif.

    Compétences attestées (transversales, spécifiques) :
Non rédigé
    Programme de l'UE / Thématiques abordées :

L’objectif de ce cours est de fournir des outils pour étudier le comportement de solutions de certains modèles mathématiques. Il faudra pour cela identifier les équilibres des modèles, leur stabilité et les changements possibles quand un paramètre change de valeur (bifurcations).

Les applications peuvent être très variées (physique, chimie, astronomie…). Dans le cadre de ce cours, nous illustrerons la théorie par des exemples d’applications pris dans la biologie, l’écologie et même les sciences humaines.

Prérequis : étude des équations différentielles ordinaires linéaires (edo) (en dimension 1, 2, ou plus) et non linéaires. Résultats d’existence et d’unicité. Résolution des edo linéaires et de quelques edo non linéaires.

Contenu du cours :

1. Systèmes dynamiques décrits par des équations différentielles ordinaires

Étude qualitative : stabilité (Analyse spectrale, stabilité locale, fonctions de Lyapounov, stabilité globale), portrait de phase, attracteurs, bassins d'attraction, classification.

2. Bifurcations

Bifurcations à un paramètre : nœud-col, transcritique, fourche sur et sous critique, Hopf
Introduction aux équations différentielles à retard et à leurs bifurcations de Hopf (si l’on a assez de temps).

Simulation en TP des divers types de comportement dynamiques. Illustration des différentes bifurcations. Exemples tirés de l'écologie (dynamique des populations), de la physiologie (dynamique des cellules sanguines) et de la physique (si l’on a assez de temps).

SELECT MEN_ID, `MEN_DIP_ABREVIATION`, `MEN_TITLE`, `PAR_TITLE`, `PAR_ID` FROM parcours INNER JOIN ue_parcours ON PAR_ID_FK=PAR_ID INNER JOIN mention ON MEN_ID = PAR_MENTION_FK WHERE PAR_ACTIVATE = 0 AND UE_ID_FK='25308' ORDER BY `MEN_DIP_ABREVIATION`, `MEN_TITLE`, `PAR_TITLE`