Université Lyon 1
Arqus
Accueil  >>  Schémas numériques pour les EDP
  • Unité d'enseignement : Schémas numériques pour les EDP
Nombre de crédits de l'UE : 3
Code APOGEE : MAT1342M
    Responsabilité de l'UE :
FOUASSIER ELISE
 elise.fouassieruniv-lyon1.fr
04.72.44.80.52
    Type d'enseignement
Nb heures *
Cours Magistraux (CM)
12 h
Travaux Dirigés (TD)
9 h
Travaux Pratiques (TP)
9 h

* Ces horaires sont donnés à titre indicatif.

    Compétences attestées (transversales, spécifiques) :
Non rédigé
    Programme de l'UE / Thématiques abordées :

L'idée ici c'est de faire des rappels sur les propriétés qualitatives des EDP, avant de présenter les méthodes numériques.

- (5HCM+3HTD) EDP elliptiques : rappels des propriétés qualitatives des solutions. Méthodes numériques pour les EDP elliptiques 1D : différences finies. Principe et ordre d'une formule. Prise en compte de conditions aux limites. Monotonie, principe du maximum discret, stabilité, convergence. Problèmes multidimensionnels (splitting directionnel). Éléments finis : Formulation variationnelle - approximation de Galerkin - lemme de Céa - éléments finis de Lagrange et Hermite en 1D.

- (3HCM+2HTD) Équation de la chaleur : rappel des propriétés qualitatives des solutions. Approximation par la méthode des différences finies en 1D. Schémas d'Euler explicite et implicite, schémas de Crank Nicolson et theta-schéma. Ordre et consistance. Analyse de Fourier et stabilité L^2. Condition CFL. Convergence.

- (2HCM+2HTD) Équations de transport linéaire. Approximation par la méthode des différences finies. Schémas décentré amont, de Lax-Friedrichs et de Lax-Wendroff. Consistance, ordre, stabilité en norme L^p. Analyse de Fourier et stabilité L^2.

- (2HCM+2HTD) Lois de conservations scalaires non linéaires. Rappel des propriétés qualitatives des solutions. Méthodes des volumes finis en 1D : schémas conservatifs, théorème de Lax-Wendroff. Exemples (les schémas de Lax-Friedrichs et Lax-Wendroff sont conservatifs). Complément : schéma de Godunov. Stabilité du schéma de Godunov et CFL.

Toutes ces méthodes feront l’objet de TP d’application.

SELECT MEN_ID, `MEN_DIP_ABREVIATION`, `MEN_TITLE`, `PAR_TITLE`, `PAR_ID` FROM parcours INNER JOIN ue_parcours ON PAR_ID_FK=PAR_ID INNER JOIN mention ON MEN_ID = PAR_MENTION_FK WHERE PAR_ACTIVATE = 0 AND UE_ID_FK='25297' ORDER BY `MEN_DIP_ABREVIATION`, `MEN_TITLE`, `PAR_TITLE`